Lifting randomized query complexity to randomized communication complexity
نویسندگان
چکیده
We show that for any (partial) query function f : {0, 1} → {0, 1}, the randomized communication complexity of f composed with Indexm (with m = poly(n)) is at least the randomized query complexity of f times log n. Here Indexm : [m] × {0, 1} → {0, 1} is defined as Indexm(x, y) = yx (the xth bit of y). Our proof follows on the lines of Raz and Mckenzie [RM99] (and its generalization due to [GPW15]), who showed a lifting theorem for deterministic query complexity to deterministic communication complexity. Our proof deviates from theirs in an important fashion that we consider partitions of rectangles into many sub-rectangles, as opposed to a particular sub-rectangle with desirable properties, as considered by Raz and McKenzie. As a consequence of our main result, some known separations between quantum and classical communication complexities follow from analogous separations in the query world.
منابع مشابه
Randomized Query Complexity of Sabotaged and Composed Functions
We study the composition question for bounded-error randomized query complexity: Is R(f ◦ g) = Ω(R(f)R(g)) for all Boolean functions f and g? We show that inserting a simple Boolean function h, whose query complexity is only Θ(logR(g)), in between f and g allows us to prove R(f ◦ h ◦ g) = Ω(R(f)R(h)R(g)). We prove this using a new lower bound measure for randomized query complexity we call rand...
متن کاملA ZPP Lifting Theorem
The complexity class ZPP (corresponding to zero-error randomized algorithms with access to one NP oracle query) is known to have a number of curious properties. We further explore this class in the settings of time complexity, query complexity, and communication complexity. r For starters, we provide a new characterization: ZPP equals the restriction of BPP where the algorithm is only allowed t...
متن کاملNearly Optimal Separations Between Communication (or Query) Complexity and Partitions
We show a nearly quadratic separation between deterministic communication complexity and the logarithm of the partition number, which is essentially optimal. This improves upon a recent power 1.5 separation of Göös, Pitassi, and Watson (FOCS 2015). In query complexity, we establish a nearly quadratic separation between deterministic (and even randomized) query complexity and subcube partition c...
متن کاملComposition and Simulation Theorems via Pseudo-random Properties
We prove a randomized communication-complexity lower bound for a composed function — OrderedSearch ◦ IP — by lifting the randomized query-complexity lower-bound of OrderedSearch to the communication-complexity setting. We do this by extending ideas from a paper of Raz and Wigderson [RW89]. We think that the techniques we develop will be useful in proving a randomized simulation theorem. We also...
متن کاملA quadratically tight partition bound for classical communication complexity and query complexity
In this work we introduce, both for classical communication complexity and query complexity, a modification of the partition bound introduced by Jain and Klauck [JK10]. We call it the public-coin partition bound. We show that (the logarithm to the base two of) its communication complexity and query complexity versions form, for all relations, a quadratically tight lower bound on the public-coin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Electronic Colloquium on Computational Complexity (ECCC)
دوره 24 شماره
صفحات -
تاریخ انتشار 2017